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Advanced closed queueing network models are available
for stochastic performance evaluation of Flexible Manufac-
turing Systems (FMS). These models are particularly useful
during the planning and design phases of FMS, since they can
be applied to study gross tradeoffs between principal design
parameters. This paper reviews and analyzes several com-
puterized models for evaluating complex FMS facilities with
respect to the desired allocation of the following key resour-
ces: manufacturing centers, transporters, pallets and tools. It
focuses on such issues as the structure of the mathematical
system models, the variety of performance measures (model
outputs), model inputs, accuracy of results and computation-
al effort. In addition, original alternatives to overcome part
of the common limitations of the models are developed and
tested empirically.

1. Introduction

Flexible Manufacturing Systems (FMS) are de-
signed to produce mid-sized batches of several
different part types with the efficiency of auto-
mated mass production and the flexibility of
job-shops. The number of new FMS facilities is
expected to grow rapidly; in fact, Barash [1]
estimates that about 5000 such systems will be in
existence by the year 2000.
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There are many complex design and planning
problems associated with constructing and man-
aging an FMS. Careful planning is required be-
cause the versatility of the machines generates
many more options to consider than in conven-
tional production systems [2]. Since the number
of variables and possibilities are overwhelming,
mathematical planning and management tools
are required [11, 26].

The use of very detailed models may be un-
neccesary in the early design stages of various
manufacturing systems and for strategic manage-
ment decisions, e.g. part-mix changes, system
modifications/expansions  and  performance
monitoring. In recent years, several mathemati-
cal tools have been developed for the analysis of
product flow in FMS. Most of these tools use
either analytic closed queueing network (CON)
models or simulation [4,12,27]. With CQON
models, one assumes that a fixed number of
items (or pallets) circulate throughout the facility
in accordance with prescribed routing require-
ments. Finished parts are immediately replaced
at the load/unload stations by raw parts. The
computed steady-state throughputs are deter-
mined by the complex relationships between the
stochastic processing times at the machines and
the random arrivals of parts to them; the expec-
ted manufacturing lead times are closely corre-
lated with the expected sojourn times at the
machines and at the robotic transporters [25].
Most of the CQN models are computationally
very efficient: that is, they require relatively little
input data, and consume little computer time.
Thus, they are applied interactively to quickly
obtain gross tradeoffs between principle design
parameters and performance measures. One can,
for instance, assess the impact of process selec-
tion, the number of machines, transporters and
pallets on the expected machine utilization,
throughputs and leadtimes. Rathmill, Green-
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wood and Housmand [17], Solberg [24] and Suri
[28] all applied industrial operational data and
detailed simulations to discuss the merits of using
this approach for modelling FMS. Their conclu-
sion was that closed queueing network models
provided accurate predictions even when more
detailed models would seem to be required.
Some of these models were programmed and
distributed as design tools to several industries,
universities and research institutes [12}. For ex-
ample, Rathmill et al. [17] used both mathemati-
cal model (CAN-Q) and simulation to support
the design effort of the ‘SCAMP’ FMS in the
United Kingdom; also, the MVAQ model de-
veloped recently by Suri and Hildebrant is used
at the optronic FMS of Hughes Aircraft Com-
pany in El Segundo, California [31].

This paper presents a comparative evaluation
of several closed queueing network models, as
these have been the most widely used models for
practical designs. Some of them were developed
especially for FMS, and others are generic mod-
els for large complex queueing networks. The
emphasis, as reflected in the title, will be on the
specific issues relevant to FMS applications. Spe-
cial attention is given, therefore, to the charac-
terization of the transporters, computations of
throughputs, the determination of the produc-
tion mix and to the routing of parts. Some of the
models discussed here suffer from limitations
due to the inherent structures of their underlying
mathematical models. A few alternatives to
overcome part of these limitations will also be
discussed.

In Section 2 we begin with a brief presentation
of the various models and design tools. Then in
Section 3 we describe the numerical experimen-
tation procedure and present their results. Next,
in Section 4 we focus on the interpretation of
results regarding predictive accuracy and compu-
tational effort. Several concluding remarks on
the relative capabilities of each approach are
provided in Section 5.

2. The design and evaluation models
All the models discussed here assume that the

manufacturing system consists of M stations
(manufacturing centers) labeled m=1,2,... , M

and a common storage area for in-process inven-
tory. This area is assumed to be large enough to
prevent blocking effects. The M centers are
viewed as the service stations of a queueing
network with R classes of part types (customers)
and K(r)=1 parts of class r,1<r=<R. Each
station m operates J(m)=1 parallel identical
servers, all fed by a common queue.

The service (manufacturing)time of a type r
part at station m is taken as exponentially distri-
buted with mean service time S(r, m),1<r<R,
1=sm=<M. The various processing sequences
are accounted for through the routing prob-
abilities between stations. The routing of part
type r from station { to station j is represented by
a Markovian routing matrix P,(i, j). From this
matrix the steady-state probabilities #(r, m) are
calculated. The #(r, m) values are non-negative
and may be scaled arbitrarily [14].

The common input parameters are:

(1) the number of stations in the system (M),

(2) the number of part types produced (R),

(3) the number of type r,1<r=<R, parts in
the system (K(r)), or the total number of parts in
the system K,

(4) the average processing time at each station
for each part type (S(r, m)),

(5) the number of parallel identical servers at
each station (J(m)),

(6) the routing probabilities or the mean num-
ber of visits m(r, m) of part type r to station m,

(7) the number of robotic transporters
J(TRAN),

(8) the average time it takes the transporter to
move a part type r from one station to the next
S(r, TRANS), and

(9) the service discipline SD(m) at station
m,1=m=M. This may be First Come First
Served (FCFS), Head of Line (HOL) or Ample
Server (AS) [14].

Ample server is a fiction, since it corresponds
to a number of parallel servers at least equal to
the number of pallets which can visit this station.
It is useful fordesign evaluation purposes, since
it describes a best case with no queueing delays.
It is also useful for analyzing conveyor ap-
paratuses.

Given these parameters, the performance
measures that the system designer requires are

(typically):




A. Seidmann et al. | Flexible manufacturing systems 93

G(r, m) = throughput of class r parts at station
m, :

and

W(r, m) = mean time spent by a class r part on
queue at station m .

From these basic variables, one can derive
various other measures. For example:

Q(r, m) = G(r, m)W(r, m)

= mean number of class r parts on queue
at station m ,

o(m) = 2 O(r, m)

=mean number of parts on queue at sta
tion m ,

RO(m) = 2 G(r, m)S(r, m)1J(m)

= utilization of a typical server at station

GS(r)=G(r, L/UL)
=class r FMS throughput ,

and

TFT(r)= K(r)/GS(r)

= mean manufacturing lead time for class
r parts.

Due to considerations of space, this paper
investigates only five models representing a
broader set of models which could not be anal-
yzed here. Fig. 1 delineates a brief taxonomy of
these models. All these models were program-
med in FORTRAN and tested on a CDC
CYBER 170/855 Computer.

Next, we introduce the reader to the CAN-Q,
MVAN, MVHEUR, PMVA and PSIM software
models. Each of these software models is as-
sociated with some computational algorithm. For
simplicity of exposition, most of the mathemati-
cal details regarding these algorithms are omitted
from our presentation. Instead, the emphasis is
placed on the relative modeling capabilities of
these five models and on their implications for
FMS studies.

m,
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C QN Models
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Fig. 1. Taxonomy of the CQN Models discussed.
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2.1. The CAN-Q model

This model was developed by Solberg [24] who
applied it successfully to capacity planning for
industrial FMS. An extension by Stecke [26]
enables CAN-Q to handle multiple part type
systems. It is based on an exact model of a
central server CON satisfying the conditions for
a product form solution [14]. (In product form
networks, the steady state distribution of the
jobs in the network can be written as a product
of factors for each station, all divided by a
normalizing constant.) The transport system is
central in the sense that every part must pass
through it before (and after) every operation. A
fixed number of parts circulate throughout the
system in accordance with prescribed routing
probabilities. In CAN-Q, as well as in all other
subsequent models, these probabilities are taken
to be independent of previous operating deci-
sions.

If the FMS produces multiple part types, then
the model is given the output mix, i.e. the
desired fraction of the total output of each type.
Then, whenever a part leaves the L/UL station
it is immediately replaced by a new part type.
Each new part type is selected probabilistically
according to the prescribed fraction for each part
type. This implies that the fotal number of parts
in the system is fixed but the instantaneous frac-
tion of each part type is not constant, i.e. a single
aggregate part type replaces a multiplicity of part
types.

All stations can have multiple servers and
employ FCFS service discipline. The principal
performance measures computed are mean
queue lengths and mean delays per station, utili-
zations of stations and transporters, and system
throughputs. Sensitivity analysis depicts the im-
pact of changing the total number of parts in the
system (K) on its overall performance by pre-
senting tables of the average flow times and of
the production rates for a range of values of K
from K—5 to K+5. Recall that the product
form solution employed in CAN-Q holds only
when the processing times at each FCFS station
are independent of the part type. In this case,
CAN-Q gives exact results. In all other cases it
provides only approximate solutions as follows:
CAN-Q handles several product types with dis-

tinct processing times at a FCFS station by re-
placing the exact processing time of each class by
a weighted average processing time at this sta-
tion (weighted according to the m(r, m)’s). This
weighted average is taken over all visits to the
station, whether they be the same part making
repeated visits, or by different part types. CAN-
Q does not compute the performance measures
per product type at the stations (i.e. Q(r, m) or
W(r, m)).

The solution procedure is based on an exten-
sion of Buzen’s [5] recursive algorithm. Buzen’s
algorithm can be applied also to a closed queue-
ing network with topologies different from the
central transport system, provided they have a
product form solution. (Only the CAN-Q pac-
kage is restricted to central server models, A
simple way to overcome this difficulty is later
presented in this paper.) The computational ef-
fort for single server stations is proportional to
the product of the number of stations by the
number of parts in the system.

2.2. The MVAN model

This model is based on the exact Mean Value
Analysis (MVA) technique introduced by Reiser
and Lavenberg [19]. It is used for analyzing
generic product form CQN and it was not de-
veloped, originally, for FMS modeling. The
users of this MVA model have to explicitly define
the transporters and the load/unload (L/UL)
stations. Modeling the transporters is not a tri-
vial task since they cannot be represented as
separate stations appearing in every other place
on the part’s routes. The appendix suggests a
way to model the transporters with such generic
CQN models. The numbers of parts per product
type (K(r)) are given by the modeler and the
MVA algorithm computes the resulting through-
puts and the output mix.

The model is based on a set of 3MR equa-
tions — handling only single server FCFS, or AS
stations. The model yields exact solutions for
product-form queueing networks where the ser-
vice demands at each FCFS station are indepen-
dent of the customer’s class (type) membership.
In this paper we also use the heuristic extension
to this model by Hildebrant [13] which can admit
class-dependent service time requirements.
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Using this extension, the mean service times
(S(r, m)) are distinguished in the recursive
model.

The model computes detailed performance
measures per station such as the throughput and
the mean waiting times per product type and the
utilization of a typical server due to each part
type. Thus, system performance is predicted on a
part-by-part basis. Other measures are aggre-
gated station, part type and system statistics.

The solution procedure involved is a recursive
algorithm which starts from the trivial solution of
the network with zero parts and gradually incre-
menting the population size, culminating in per-
formance measures to construct the solutions for
the population of interest. The computational
effort is proportional to the number of stations,
and to the product K(1)- K(2). . .K(R). Because
this recursive solution technique requires exces-
sive time and space for large networks, an ap-
proximate MVA algorithm is often suggested
instead for practical use. Such a model is discus-
sed next.

2.3. The MVHEUR model

This is an approximate MVA algorithm which
provides fast and accurate solutions of very large
networks. The original algorithm presented by
Schweitzer [20] can handle single server FCFS or
AS networks where the various part types may
require distinct routing and distinct service de-
mands at each station.

The variety of performance measures com-
puted by the model is identical to that of the
MVAN model. The solution algorithm is based
on solving a set of 3MR equations by successive
substitutions. The algorithm needs an initial
guess for a starting point and it iterates until the
convergence criteria are met. Proofs of converg-
ence or uniqueness of solution are not available
but these hold empirically. When properly im-
plemented the computational effort is propor-
tional to the sum M + R of the number of sta-
tions and the number of part types, and is in-
dependent of the number of parts in the network.
Several studies indicate that since this approxi-
mation technique is reasonably accurate, it may
become useful as a general technique, even for
networks that could be solved exactly [16]. More

accurate extensions, at the expense of increased
computational effort, are also available [7].

2.4. The PMVA model

PMVA, a model recently developed by Shalev-
Oren, Seidmann and Schweitzer [23] extends the
general principles of MVHEUR to mode! FMS
with parallel stations having several identical
machines; service discipline at each station can
be either AS, FCFS or HOL priority scheduling
scheme [10]. At HOL stations the same priority
level may be assigned to several product types,
and the relative priority level assigned to a given
product type may change from station to station.
The load/unload stations and the transportation
system are explicitly modeled. Optionally,
PMVA can handle an FMS with several transpor-
tation mechanisms operating with partitioned
service responsibilities (i.e. each mechanism ser-
ves a distinct zone in the facility). The transpor-
tation times may be distinguished according to
the actual distance among machine groups and
the part type attributes (i.e. pallets’ weight).

The variety of performance measures com-
puted by PMVA is similar to that of the MVAN
and the MVHEUR models. The solution al-
gorithm used in PMVA solves by successive sub-
stitutions a set of 2MR simultaneous non-linear
equations. An initial guess is provided by the
model. The MVHEUR equations constitute a
special case of the PMVA model for the single
server FCFS or AS stations.

2.5. The PSIM model

This is a generic GPSS simulation model of
FMS developed by Shalev-Oren, Seidmann and
Schweitzer to support their research efforts in
the field of FMS modeling [23]. The input file
used is identical to that of PMVA. It was desig-
ned to allow easy experimentation with new
layout configurations and to study the interplay
of transportation times, part mix and other pro-
duction control alternatives. It can model FMS
similar to those handled by PMVA with a central
transporter. The output production mix of the
FMS is not predetermined and is computed by
PSIM as a function of the number of parts per
type used in the system (K(r)). PSIM may, alter-



96 A. Seidmann et al. | Flexible manufacturing systems
Table 1
Comparative summary of attributes
CAN-Q MVAN MVHEUR PMVA PSIM
Input data
Routing Routing Routing Routing Routing
Part routing proportion: proportion: proportion: proportion: matrix:
w(r, m) w(r, m) w(r, m) w(r, m) Pr(i, j)
Process times Exponential® Exponential* Exponential® Exponential® Arbitrary®
Output mix Pre- Computed Computed Computed Computed or
determined predetermined
Number of
part types: One* Many Many Many Many
System
Structure Central Generic Generic FMS* Central
server network network network server
Scheduling FCFS* FCFS, AS FCFS, AS FCFS, AS FCFS, HOL®
HOL
Parallel
server stations Yes No No Yes Yes
Transporter Central Not Not Central & Central
explicit explicit partitioned
Pallets Identical Muitiple Multiple Multiple Multiple
type types types types types
Solution
algorithm
Approach Finite Finite Iteration Iteration Digital
recursion recursion ) simulation
on population on population
Accuracy Exact' Exact’ Heuristic Heuristic Simulated
Sensitivity Yes No No No No
analysis
Computational
effort
depends on M,R, K M, R, M+R M+R -
K(1)- K(2)...K(R)
Principal
performance
measures
G(r,m), W(r,m)  No® Yes Yes Yes Yes
Q(m), RO(m) Yes Yes Yes Yes Yes
GS(r) Yes Yes" Yes” Yes" Yes"
Probability
distribution
of Q(m) Yes No No No Yes

*Part type — independent process times at each FCFS station are required to guarantee exact results, otherwise results are

approximate.

®The mean processing times at the stations can be part type-dependent.
“Single aggregate part type replaces multiplicity of actual part types.
“Both generic CQN and FMS with transporters can be modeled.

¢ As can be modeled by assigning K parallel servers to a station.

‘Type-independent process times at each FCFS station are required to guarantee exact results.

In principle, it is possible to compute these measures but the results are only approximate since inaccurate process time

averages are used.

" A special Load/Unload station, defined as the last station visited on a part route, is used to measure the throughputs.
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natively, model a system similar to CAN-Q
where the output mix is predetermined.

In PSIM the user can define the desired distri-
bution of manufacturing and processing times. It
computes the same performance measures as
PMVA and, in addition, it provides the transient
response and the steady-state distributions of
selected output variables. Changes in the physi-
cal layout such as addition/deletion of stations
and products are facilitated by changes in the
numerical input fields of PSIM. No rewriting of
the GPSS statements is required since it is inten-
ded for non programmer users.

Table 1 presents a comparative summary of
attributes for these programs.

3. Numerical experimentation and predictive
capabilities

The relative predictive capabilities of the dif-
ferent models is based upon examining their
results for the same design problem. There are,
as discussed earlier, several inherent differences
in the expressivity and applicability of the vari-
ous models. The common denominator for all
models is an FMS with single server FCFS or AS
stations and with identical processing times for
all product types at each station. Unfortunately,
this is a trivial case, not appropriate for real
industrial applications. This paper analyzes,
therefore, a more involved system and investi-
gates few alternatives for modeling it despite
existing limitations in some of the models.

The system examined here produces three

Assume that there are three machining centers
(M =3): three machines of type A in the first
center; two machines of type B in the second;
and one type C machine in the third. One trans-
porter (TRANS) is used for material handling
and there is one load/unload (L/UL) station
(Fig. 2). Ten percent of the produced items are
routed randomly to the inspection station (INS),
before reaching the L/UL station. The mean
transport time is assumed to be 2 time units. The
system operates with 6, 6 and 9 pallets for prod-
uct types 1,2 and 3, respectively. Table 2 pre-
sents the process requirements (i.e. the routes
and service times) for the three product types.
Denote the FMS configuration detailed above as
Configuration 1.

Using Configuration I, the CAN-Q model
does not lead to exact results. Thus, define Con-
figuration Ia which is identical to I except that in
Ia the processing times are independent of the
part types. Table 3 presents the processing re-
quirements for Ia.

3.1. Modeling parallel server stations

The MVAN and MVHEUR cannot analyze
either I or Ia because some of the stations have
several servers. (An extension of MVAN for
parallel servers has been given by Reiser [18],
but its code is not publically available.) At pre-
sent, many efficient CQN models described in
the literature (e.g. [6-9]) can handle only single
server stations and state-dependent approxima-
tions can require significant computational ef-
forts for large multiclass networks (e.g. [32]).

product types (R =3) labeled: r=1, 2 and 3. Therefore, three alternative approaches to
Table 2
Process requirements: configuration I

Part type (r)
Station S(1, m) w(1, m) S(2, m) w(2, m) $(3, m) w(3, m)
(m)
A 20 1.0 30 1.0 25 1.0
B 15 1.0 15 1.0 18 1.0
C - 0.0 - 0.0 25 1.0
INS 35 0.1 45 0.1 35 0.1
L/UL 7 1.0 8 1.0 7 1.0
TRANS 2 31 2 3.1 2 4.1
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Fig. 2. The FMS facility.

Table 3
Process requirements: Configuration Ia

Part type (r)

Station S(1, m) (1, m) S(2, m) (2, m) S3,m) w(3, m)
(m)

A 25 1.0 25 1.0 25 1.0

B 16 1.0 16 1.0 16 1.0

C - 0.0 - 0.0 25 1.0

INS 7.3 0.1 7.3 0.1 7.3 0.1
L/UL 38 1.0 38 1.0 38 1.0
TRANS 2 31 2 3.1 2 4.1
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analyzing parallel server stations with single ser-
ver models were investigated instead. Configura-
tion II is identical to 1 except for the parallel
server stations representation. This configuration
has only single server stations; each stations m’ in
I having J(m')>1 is replaced in II by J(m')
parallel single server stations denoted as

My, My ooy My

Each of these J(m') servers gets a fixed fraction
1/J(m') of the arriving load. These J(m') sta-
tions operate with distinct queues satisfying

w(r,m))=w(r, m')/J(m')
and

S(r,m))y=8(r,m'y, i=1,2,...,J(m').

Additionally, we investigated Configuration Ila
which was derived from Ia in a similar fashion
that Ia was derived from I. This specific configu-
ration can be solved by all five models. It is
expected that Configuration II will lead to pes-

e

§-00

Configuration I

9

simistic sojourn times estimates since some of
the parallel servers may be idle while others have
queues (no jockeying). Since the FMS is mod-
eled as a closed network, these pessimistic esti-
mations should lead to downward bias in the
computed throughputs.

Next, in Configuration III each station in I
having J(m') parallel machines is replaced by a
faster machine operating at J(m') times the rate.

Finally, Configuration IV is also similar to I
except for the parallel server stations representa-
tion; each station m' in I having J(m')>1 is
replaced in IV by two stations in a tandem
arrangement (see Fig. 3). The first station (m;,) is
a single server FCFS and the second (m;) oper-
ates as AS. The parameters of IV are:

w(r,m))=m(r,my)=mw(r,m’),
S(r, m)=S(r,m")IJ(m'),
S(r,my) = S(r, m"Y(J(m') - 1)/J(m"),

SD(m) = FCFS, SD(m}) = AS .

Configuration I

©

Configuration I

=>¢>@-—-

OlmeOln’e

FCFS AS

(mll) (m'z)
or

Configuration

Fig. 3. Parallel stations representation in Configurations I, I, III and IV.
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The structure of IV also attempts to overcome
the difficulties of the single server models. It is
based on the heuristic assumption that under
medium to heavy utilization, J(m’) servers will
clear a queue J(m’) times as fast as a single
server. Hence, the expected waiting time on
queue for (m)) is close to that for station (m’)
with J(m') parallel servers. The second station in
IV, (m;), is added to rectify the mean-time-in-
station estimates by assuring that the total ser-
vice remains the same. For further discussion of
this approach see [22]. Our conjecture was that
configuration IV will result in more accurate
predictions than configurations II and III.

3.2. Non-central transporters

Following this explanation, there is another
subtle point that should be treated. Using m; and
m) in IV, rather than m’ in I, means that the
transporter has to cater for an additional leg
within this pair. Of course, the transfer time for
this dummy leg is zero. The CAN-Q model, on
the other hand, assumes central transporter with
equal transfer times. Using CAN-Q in IV we
cancelled the central transporter (by inserting
zero transfer times as inputs to the program),
and we augmented the model with another “sta-
tion”. The mean service times at the new “‘sta-
tion” is set equal to the mean transfer times in I

and its routing proportion is set to the
a(r, TRANS) of the central transporter in I.

Next, we focus on two key issues in perform-
ance evaluation of FMS with computer models of
CQN. The first issue is the degree of correspond-
ence between the predictions of the various mod-
els for the same configuration. Here Configura-
tions I and Ia were analyzed with CAN-Q,
PMVA and PSIM (Tables 4 and 5) and Configu-
rations Il and Ila were analyzed with all the five
models (Tables 6 and 7). The second issue inves-
tigated here is the value of modeling an FMS,
operating with several parallel server stations,
using single server models (i.e. by Configurations
II, II1 and IV). This issue was analyzed by
comparing the results of CAN-Q and PMVA
over Configurations 1, II, III and IV (Table 8).
The numerical results and their interpretations
are presented next.

4. Assessment of results

Tables 4-8 display a selected summary of vari-
ous performance measures computed by the five
models. These measures are defined in Section 2.
In Tables 4-6 the performance measures are
compared with the PSIM results since there is no
publicly available code for computing the exact
results for these configurations. The performance

Table 4
Configuration I (PMVA, CAN-Q vs. PSIM)

RO(m) W(r, A)

TRANS L/UL INS C B A 3 2 1
PMVA 0.731 0.785 0.410 0.833 0.853 0.888 37.79 36.38 37.31
PSIM 0.720 0.790 0.405 0.870 0.864 0.899 37.10 34.70 35.44
CAN-Q 0.728 0.782 0.409 0.827 0.850 0.884
A(PMVA)% +2 -1 +1 -4 -1 -1 +2 +5 +5
A(CAN-Q)% +1 -1 +1 -5 -2 -2

Q(m) GS(r) x 10*

TRANS L/UL INS C B A 3 2 1
PMVA 1.67 2.31 0.27 2.38 3.27 3.98 333 356 381
PSIM 1.66 2.46 0.34 2.07 3.40 3.87 342 358 382
CAN-Q 1.7 2.32 0.27 3.01 3.06 3.53 331 352 384
A(PMVA)% +1 -6 =21 +14 -3.8 +2.8 -3 -1 -
A(CAN-Q)% +3 -6 -21 +45 -10 -9 -3 -2 -1
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Table 5
Configuration Ia (PMVA, CAN-Q vs. PSIM)
RO(m) W(r, A)
TRANS L/UL INS C B A 3 2 1
PMVA 0.732 0.751 0.408 0.836 0.858 0.894 40.2 39.2 39.2
PSIM 0.732 0.763 0.437 0.880 0.867 0.908 39.2 36.7 36.9
CAN-Q* 0.729 0.749 0.406 0.829 0.855 0.891
A(PMVA)% - -2 -7 -5 -1 -2 +3 +7 +6
A(CAN-Q)% - -2 -7 -6 -1 -2
Q(m) GS(r) x 10*
TRANS L/UL INS C B A 3 2 1
PMVA 1.69 1.87 0.26 2.42 3.39 4.24 335 369 369
PSIM 1.75 2.02 0.36 2.14 3.35 412 349 372 372
CAN-Q* 1.73 1.93 0.27 3.06 3.19 3.73 332 369 369
A(PMVA)% -3 -7 -28 +13 +1 +3 -4 -1 -1
A(CAN-Q)% -1 -4 =25 +43 -5 -9 -5 -1 -1
*Denotes exact analytic sotution.
Table 6
Configuration II (PMVA, CAN-Q, MVAN, MVHEUR vs. PSIM)
RO(m) W(r, A)
TRANS L/UL INS C B A 3 2 1
PMVA 0.642 0.684 0.357 0.787 0.748 0.775 72.23 70.03 71.82
PSIM 0.622 0.671 0.354 0.788 0.753 0.775 80.64 72.05 75.67
CAN-Q 0.639 0.680 0.355 0.790 0744 0770 | - - -
MVAN?® 0.648 0.689 0.359 0.806 0.754 0.781 72.89 67.75 71.76
MVHEUR 0.642 0.684 0.357 0.787 0.748 0.775 72.31 70.11 71.90
A(PMVA)% +3 +2 +1 - -1 - -10 -3 -5
A(CAN-Q)% +3 +1 - - -1 -1
A(MVAN)% +4 +3 +1 +2 - +1 -10 -6 -5
A(MVHEUR)% +3 +2 +1 - -1 - -10 -3 -5
Q(m) GS(r) x 10*
TRANS L/UL INS C B A 3 2 1
PMVA 1.01 1.28 0.19 1.83 1.87 2.22 315 302 318
PSIM 1.00 1.25 0.19 1.41 1.93 2.34 321 298 307
CAN-Q 1.03 1.28 0.19 2.33 1.81 2.09 316 297 316
MVAN* 1.07 1.33 0.20 1.55 1.92 222 322 301 317
MVHEUR 1.01 1.28 0.19 1.83 1.87 2.22 315 302 318
A(PMVA)% +1 +2 - +29 -3 -5 -2 +1 +3
A(CAN-Q)% +3 +2 - +65 -6 -11 -2 - +3
AMVAN)% +7 +6 +5 +10 - -5 - +1 +3
A(MVHEUR)% +1 +2 - +29 -3 -5 -2 +1 +3

*Denotes heuristic recursive solution for distinct processing times.
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Table 7
Configuration IIa (PMVA, PSIM, CAN-Q, MVHEUR vs. MVAN)

RO(m) W(r, A)

TRANS L/UL INS C B A 3 2 1
PMVA 0.645 0.657 0.357 0.791 0.751 0.782 73.1 71.8 71.8
PSIM 0.645 0.665 0.376 0.795 0.756 0.797 73.5 69.6 68.8
CAN-Q 0.640 0.652 0.354 0.791 0.745 0.775 - - -
MVHEUR 0.645 0.657 0.357 0.791 0.751 0.782 73.1 71.8 71.8
MVAN® 0.651 0.662 0.359 0.811 0.756 0.787 73.8 70.9 70.9
A(PMVA)% -1 -1 -1 -2 -1 -1 -1 +1 +1
A(PSIM)% -1 - +5 -2 - +1 - -2 -3
A(CAN-Q)% -2 -2 -1 -2 -1 -2 - - -
A(MVHEUR)% -1 -1 -1 -2 -1 -1 -1 +1 +1

Q(m) GS(r) x 10*

TRANS L/UL INS C B A 3 2 1
PMVA 1.03 1.09 0.183 1.87 3.75 6.78 316 311 311
PSIM 1.10 1.21 0.190 1.54 3.84 6.73 327 312 313
CAN-Q 1.03 1.10 0.188 2.35 3.62 6.44 317 307 307
MVHEUR 1.03 1.09 0.183 1.87 3.74 6.78 316 311 311
MVAN® 1.09 1.15 0.196 1.59 3.83 6.79 | 324 310 310
A(PMVA)% -6 -5 -7 +17 -2 - -2 - -
A(PSIM)% +1 +5 -3 -3 - -1 +1 +1 +1
A(CAN-Q)% -6 -4 -4 +47 -5 -5 -2 -1 -1
A(MVHEUR)% -6 -5 =7 +17 -2 - -2 - -

*Denotes an exact analytic solution.

measures in Table 7 are compared against the
exact results of the MVAN model. These tables
present empty entries for the W(r, A) for CAN-
Q since CAN-Q does not provide waiting times
statistics per product type at each station.

The CAN-Q model requires predetermination
of the desired output mix. In the experiments
reported here, we first ran the PMVA models
and later used their computed production mixes
as inputs to CAN-Q, rounding them to the clos-
est integer percentage. The reader is reminded
that CAN-Q is qualitatively different from the
four other models; the PMVA, MNHEUR,
PSIM and MVAN are based on multiclass CQN
models, whereas CAN-Q is based on a single
class. Its results are presented in order to ex-
amine the potential deviations of key perform-
ance measures (i.e. RO(m) and Q(m)) as a result
of using these two distinct modeling perspec-
tives.

Observing Tables 4-7 indicates that, for the
same configuration, the differences in the part
type throughput predictions (GS(r)) and the

machines’ and transporters’ utilizations (RO(m))
are less than 7% in all cases; the differences in
the queue length and mean queueing times esti-
mates in most cases (except for stations C and
INS) are less than 10%. This is a well-known
phenomenon that using closed queueing network
models the throughputs and utilizations are typi-
cally predicted with greater accuracy than queue
lengths and sojourn times [16]. As can be seen,
the differences in predicting Q(c) and Q(INS)
are as large as 30-45%. We conjecture that the
reason for these deviations stems from the fact
that only a small fraction of the parts population
traveled through stations INS and C. This resul-
ted in significantly larger estimation variability
and, hence, wider simulated sampling confidence
intervals for these stations parameters.

Table 7 shows the average deviations of the
four models’ results from the MVAN predictions.
These are fairly close except for the Q(c) esti-
mates; these deviations may result from the fact
that since only one part type (r = 3) visits station
C the estimation errors for Q(c) are not ‘aver-

—-
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Table 8
Comparative analysis (Configurations II, III and IV vs. I)
RO(m) W(r, A)
Configuration TRANS L/UL INS C B A 3 2 1
I 0.731 0.785 0.410 0.833 0.853 0.888 | 37.79 36.38 373
PMVA I 0.642 0.684 0.357 0.787 0.748 0.775 | 70.03 70.03 71.8
111 0.740 0.796 0.416 0.838 0.864 0.902 | 51.15 4930 50.5
v 0.719 0.772 0.404 0.828 0.840 0.874 | 40.46 40.46 41.4
A(II-1)/1% —12 -13 -13 -6 -12 -13 +85 +92 +92
A(III-1)/1% +1 +1 +1 +1 +1 +2 +35 +36 +35
A(V-)/1% -2 -2 -1 -1 -2 -2 +7 +11 +11
Configuration
I 0.728 0.782 0.409 0.827 0.850 0.884
CAN-Q 1I 0.639 0.680 0.355 0.790 0.744 0.770
I 0.737 0.792 0.414 0.837 0860 0.894
v 0.720 0.774 0.404 0.818 0.841 0.874
A(II-1)/1%  —12 -13 -13 —4 -12 -13
A(II-1)/1% +1 +1 +1 +1 +1 +1
A(IV-1)/1% -1 -1 -1 -1 -1 -1
Q(m) GS(r)
Configuration TRANS L/UL INS C B A 3 2 1
I 1.67 2.31 0.27 2.38 3.27 3.98 333 356 381
PMVA 11 1.01 1.28 0.19 1.83 1.87 2.22 315 302 318
I1I 1.76 2.48 0.28 2.45 4,01 5.45 335 370 379
v 1.56 2.13 0.25 2.31 3.37 4.34 331 349 373
A(II-I)/1% —40 —45 -30 -23 —43 —44 -5 -15 -17
A(UI-1)/1% +5 +7 +4 +3 +22 +37 +1 +4 -1
A(IV-D)/1% -7 -8 -7 -3 +3 +9 -1 -2 -2
Configuration
I 1.71 2.32 0.27 3.01 3.06 3.53 331 352 384
CAN-Q I 1.03 1.28 0.19 2.33 1.81 2.09 316 297 316
I 1.83 2.51 0.28 3.29 3.80 4.73 333 355 388
v 1.62 2.18 0.27 2.81 3.20 3.91 327 348 380
A(I-1)/1% -40 —45 -30 =23 —41 -41 -5 -16 -18
A(II-1)/1% +7 +8 +4 +9 +24 +34 +1 +1 +1
A(IV-D)/1% -5 -6 - -7 +5 +11 -1 -1 -1

aged’ over several product types; on the other
hand, the transporters, which handled all prod-
uct types, present small deviations in most cases.

It is interesting to note that there are only
minor deviations between most of the
MVHEUR and the MVAN approximations for
Configurations II and IIa (Tables 6 and 7). The
MVAN approximations for Configuration II
(Table 6) are produced by the heuristic method
presented by Hildebrant [13]. Moreover, the re-
sults in Table 6 seem to indicate the superiority
of the MVHEUR (and PMVA) over the MVAN
heuristic recursion. These findings suggest that

when a product form does not hold, MVHEUR
is preferred to the heuristic version of MVAN
since both maintain the same accuracy level
while the former is parsimonious in terms of its
time and memory requirements. This observa-
tion is consistent with earlier observation by Suri
and Hildebrant [31]. Based on the Table 7 re-
sults, the predictions of PMVA and MVHEUR
are — for most measures — within a few percent of
the MVAN exact results. The prediction error of
these models is caused by using Schweitzer’s
approximated correction term to accelerate the
solution times [21].
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Configurations II, III and IV are proposed as a
substitute for Configuration I. Table 8 presents
the relative deviations of several measures in
Configurations II, IIT and IV with respect to I.
As anticipated, using Configuration II results in
pessimistic estimates for the mean machine utili-
zations, mean waiting time and the throughputs;
for example, the bias is —6% to —13% for the
RO(m)’s and ~5% to —17% for the GS(r)’s. In
addition, Configuration II leads to optimistic
queue length estimates since common queues in
front of the parallel server stations are replaced
by several parallel queues; the downward bias
for Q(m) is between —23% and —45%.

Configuration III replaces the J(m) parallel
machines at station m by a single machine which
is J(m) times as fast; thus, parts visiting the
parallel machines stations spend less time in
actual processing and more time waiting on
queues. Indeed, the research results indicate that
there is a significant increase in the Q(m)’s and
in the W(r, A)’s estimates which lead to slight
increases in the computed machine utilizations
and FMS throughputs estimates. Also, note that
in this configuration the largest deviations in the
queue length estimates occur at the two parallel
machine stations A and B.

Observing Configuration IV clearly indicates
better performance than II or III -resulting
from smaller deviations with respect to the val-
ues of I. From Table 8 it is evident that the
deviations of the throughputs and machine utili-
zation estimates are rather small ranging be-
tween —1% and —2%. Considering the mean
queue length and the mean waiting time esti-
mates, which are directly related, we note devia-
tions of 11% or less.

Although a complete analysis of the issues
involved in approximate modeling of parallel
server stations with single server models was not
presented here, these results indicate that an
approach similar to the one realized by Configu-
ration IV should be preferred to the ‘crude’
approach proposed by II and III. Better yet,
when feasible, is to employ a model initially
designed to treat parallel server stations [31, 32].

The computational effort

The computational efforts involved in using
these five models is a function of two major

factors. One is the underlying mathematical mod-
els and the other is the efficiency of the software
tools developed to implement them. In the cases
of CAN-Q and MVAN, the solution procedure is
recursive and finite. The user cannot affect the
solution effort. By contrast, the solution proce-
dure of MVHEUR and PMVA is iterative and
infinite. The solution effort depends on the initial
guess and on the convergence criteria. Since both
models use successive substitutions the converg-
ence criteria significantly impacts the required
number of iterations.

Experimenting with the models described here
did not reveal any significant differences in the
core memory and computer time requirements
between models in which the computational ef-
fort depends on the population size (CAN-Q,
MVAN), and those in which it does not
(MVHEUR, PMVA). This observed similarity in
computer times may be partly attributed to the
smallness of the test populations. It may also be
partly attributed to variances in programming
styles and memory allocation procedures.

As expected, the PSIM program stands out as
using relatively long computer times. These are
determined by the desired confidence level for
the key variables. In this study the PSIM simula-
tions in all cases were terminated by using a
sequential stopping rule that employed Batch
Means Analysis to estimate the confidence inter-
val for the estimates of the FMS throughputs.
Once the half-width of the confidence interval
was less than 5% of the estimated means, the
simulation was stopped [15]. It should be noted,
however, that such a stopping rule may lead to
overly optimistic estimates of the properties of
the confidence interval. A PSIM average run
length is several CPU minutes as compared with
a few seconds in all other analytic models. This
relative difference of computational effectiveness
provides a significant advantage for analytic
models in interactive design sessions.

5. Summary and conclusions

The purpose of this paper is to investigate the
relative modeling capabilities, the accuracy of
estimates and the solution procedures of five
well-known computer network models used for
complex FMS design evaluations. Two of the
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models (MVAN, MVHEUR) can handle only
single server FCFS or AS stations. Thus, special
attention is given here to the problem of over-
coming this limitation when necessary. Three
alternate solutions to that problem are proposed
and tested empirically.

Explicit representation of the transporters ex-
ists only in CAN-Q, PMVA and PSIM. We
propose a way to model the transporters in
generic CQN models. Priority scheduling is also
explicit in PSIM and PMVA and impossible in all
of the other models. Only CAN-Q can model a
system with a predetermined output mix, but is
incapable of modeling a system in which a fixed
number of parts per product type journey
through it.

Numerical experimentations reported here
indicate that the accuracy level of the analytic
models (CAN-Q, MVAN, MVHEUR and
PMVA) is rather close in most cases. Deviations
in the throughput and utilization estimates were
significantly smaller than in the queue length and
waiting time estimates. Of course, the values
used in our examples were chosen arbitrarily,
simply as illustrative case, so the tables we pre-
sent cannot be taken as generally applicable. The
method of research, however, and the main les-
sons discussed about the issues involved in using
CQON models for FMS along with the attributes
and the relative capabilities of the models consi-
dered, have general implications for manufactur-
ing systems designers.
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Appendix: Modeling the transporters with a
generic CQN model
A.1. A central transporter

A system with a central transporter satisfies:

G(r, TRAN) = 2_ G(r,m), (A.1)

since each visit to a station requires a transporta-
tion service. The mean transport time for a type
r part is denoted by S(r, TRAN). From Little’s

law we get:

w(r, m)K(r)

G(r,m)=

M

2 m(r, HIWCr, j)+ S(r, j)

j=1
+ W(r, TRAN) + 5(r, TRAN)] ,
m=12,... . Mr=12,...,R.

(A.2)

Substituting (A.2) into (A.1) leads to:

G(r, TRAN)
_ f 7(r, m)K(r)

> w(r, DIWC(r, j)+ S(r, )

j=1

+ W(r, TRAN) + S(r, TRAN)]

K(r) E w(r, m)

M

> w(r, HIWCr, j) + SCr, )]

j=1

+ [W(r, TRAN) + S(r, TRAN)] 2 7(r, j)

(A.3)
Defining the sum of the =(r, m)’s as
M
7(r, TRAN) = 2, 7(r, j) . (A.4)

j=1

leads to the reformulation of Little’s law for the
network by adding to it the TRANS station as
the (M + 1)-st station:

K(r)mw(r, m)

G(r,m)=

M+1

2 a(r, PIW(r, j)+ S(r, )]

j=1

m=1,2,... M,M+1. (A.5)
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Hence, in the case of the central transporter, we
end up with defining the transporter as an addi-
tional station whose visit ratio, w(r, TRAN), is
defined by (A.4).

A.2. Several transporters

Suppose that the FMS uses N transportation
systems which do not interfere with the motions
of each other. Each system n(n=1,2,...,N)is
responsible for a set of {A,} of the transporta-
tion legs in the system. In this case we get for
transporter n:

M

w(r,M + n)= Z 7(r, m) Z P(m,j),

m=1 ji=1

n=1,2,...,N, (A.6)

{m—j} € A, i.e. the transfer from m to j be-
longs to set A,, and P, is the (M X M) routing
matrix of type r between the stations in the
system. The reader can easily verify that (A.4) is
a special case of (A.6) for N=1.
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